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Summary

This paper presents the forward position kine-

matics (given the eight joint angles, how to find

the Cartesian position and orientation of the end ef-

fector) and forward velocity kinematics (given the

eight joint rates, how to find the Cartesian transla-

tional and rotational velocities of the end effector)

for the redundant eight-degree-of-freedom Advanced

Research Manipulator II (ARMII).

Inverse kinematic solutions, required to control

the manipulator end effector, are also presented. For
a redundant manipulator, the inverse kinematic so-

lutions are not unique because they involve solving
for eight unknowns (joint angles for inverse position

and joint rates for inverse velocity) in only six equa-

tions. The approach in this paper is to specify two

of the unknowns and solve for t_he remaining six un-

knowns. Two unknowns can be specified with two

restrictions. First, the elbow joint angle and rate
cannot be specified. The elbow joint angle is deter-

mined solely by tile commanded position of the end

cffector. Likewise, the elbow joint rate is determined

by the commanded Cartesian translational velocity

of the end effector. Second, one unknown must be
specified from the four-jointed wrist, while the sec-

ond unknown must be specified from one of the arm

joints (elbow joint excluded) that translate the wrist.

The inverse position solution has eight solutions

for each set of two specified joint angles. No alternate

inverse position solutions are presented for singular

configurations. In the inverse velocity problem, with

two specified joint rates, the solution is unique pro-
vided that the Jacobian matrix is nonsingular. A

discussion of singularities is based on specifying two

joint rates and analyzing the reduced Jacobian ma-
trix. When the reduced Jacobian matrix is singular,

the gcneralized inverse can be used to move the ma-

nipulator away from the singularity region.

With two redundant joints, the methods of this

paper allow considerable freedom in solving the in-

verse kinematic problems. However, no control

strategies are developed to move the manipulator.
Control strategies are developed through ARMII

hardware experience.

A symbolic manipulation computer program was

used with existing standard methods in robotics for
the derivation of the equations. In addition, corn=

puter simulations were developed to verify the equa-

tions. Examples demonstrate agreement between
forward and inverse solutions.

1. Introduction

The Advanced Research Manipulator II (ARMII),

a redundant research manipulator built by the AAI

Corporation for NASA, is well suited for space tcle-

robotic applications and earth-based simulations of

space telerobotic applications. The ARMII has sev-

ern features that distinguish it from common indus-

trial manipulators: (1) two redundant degrees of free-

dom, (2) high payload-to-weight ratio with a 40-1b

design payload at a 60-in. reach, (3) modular joint

design, (4) high joint and link stiffness with graphite-

epoxy composite link material, (5) continuous bi-

directional end-effector roll, (6) input and output

joint position encoders, and (7) space flight quali-
fiable components. This paper presents kinematic

equations that can be implemented for basic control
of the ARMII.

NASA Langley Research Center has two ARMII's
for investigation of redundant dual arm control and

disturbance compensation for space operations. Fig-

ure 1 is a photograph and figure 2 is a schematic

diagram of the ARMII, a redundant serial manip-

ulator with eight revolute joints. For general spa-
tial tasks, six degrees of freedom are required. The

ARMII has two redundant joints; with this extra

freedom, performance criteria can be satisfied in ad-
dition to the commanded motion. The use of this

redundancy is not presented in this paper; how-

ever, references 1 to 8 present control methods for

redundant manipulators. These references use ma-

nipulator redundancy to satisfy performance crite-

ria, such as singularity avoidance, joint limit avoid-

ance, minimization of joint rates, minimization of

manipulator energy, and optimization of manipula-

tor configuration.

The ARMII forward position, inverse position,
forward velocity, and inverse velocity problems are

formulated and solved in this paper. The forward

solutions are given for all eight degrees of freedom.

The term forward position transformation hereafter

indicates both position and orientation. The inverse
solutions involve six equations in eight unknowns.

The inverse solutions in this paper require that two

of the eight joint angles and rates are specified and

then the remaining six joint angles and rates are
solved. Joint angles and rates for different joints can

be specified at each calculation step. Therefore, this

approach is more general than one that locks two
joints for all motion.

The forward position transformation is presented

after a discussion of kinematic simplification. With
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the conventions of Craig (ref. 9), the Denavit-

Hartenberg parameters and the homogeneous
transformation matrices relating successive coordi-

nate frames are presented. The forward position

transformation is factored for efficient computation.

The inverse position solutions are presented next.

Two angles are specified and the remaining six are

position and velocity kinematics, the forward solu-

tion output is the inverse solution input used to ver-

ify the results.

The methods used for derivation of the forward

kinematic equations in this paper are existing stan-

dard methods in robotics. A computer symbolic

manipulation program was used extensively for

solved. In this paper, one joint angle must be derivation of the equations. In addition, computer
specified from the arm joints (1-3) and one from sinmlations were developed to verify the equations.

the wrist joints (5--8). Choosing two wrist joints The inverse position solutions are original work based

is possible, but it leads to an underconstrained set

of equations for the arm joints, and these equations

are not dealt with in this paper. The elbow joint

angle 04 is solved independently of the remaining

joint angles and cannot be specified. The length of
reach from the shoulder to the wrist determines the 2. Symbols

elbow joint angle 04 with two possible configurations,
elbow up and elbow down. All twelve combinations ARMII

of specified joints are allowed in the methods of this ai-1
paper. For each combination, eight inverse position
solutions exist, ci

The velocity solutions follow the position solu- di

tions. The forward velocity solution is a linear trans- d3, d5

formation from joint rates to Cartesian rates through
the Jacobian matrix. The 6 × 8 Jacobian matrix is

presented with respect to the base frame and with Jij

respect to the elbow frame. The Jacobian matrix J*

with respect to the elbow frame involves less sym-

bolic terms than any other frame for the ARMII.
The computation of either Jacobian matrix involves Ki, KKi

terms from the forward position transformation. L1

The resolved motion rate, or inverse velocity, L8

problem (ref. 10) is solved in a manner similar to mj
the inverse position problem. Two joint rates are
specified, one from the arm joints (1 3) and one rnJLL

from the wrist joints (5 8). The elbow joint rate 04 mJL R
cannot be specified because it is uniquely determined
by the Cartesian translational velocity command, rnJLRj

The resolved motion rate problem is solved in closed _{JLRj}
form for the Jacobian matrix with respect to {4}.

The inverse velocity solution is unique, provided that mJUL

the Jacobian matrix has full rank. In this paper,

singularity solutions are not presented; that is, the
Jacobian matrix is assumed to have a rank of six.

An identification of ARMII singularities is based

on specifying two joint rates in the resolved motion

rate problem and analyzing the reduced Jacobian

matrix. Singularity conditions are presented for all

specified joint combinations. No alternate singularity

solutions are developed.

Examples are presented to demonstrate the equa-
tions for all solutions given in this paper. For both

on an adaptation and extension of reference 11. The

principal contribution of this paper is the first pr_
sentation of efficient position and velocity kinematic

equations for the ARMII.

mJuR

m{J1uLi}

mJ1uLi4

IlPlI

{nPm}

{Px,Py,Pz} T

Advanced Research Manipulator II

Denavit-Hartenberg parameter

cos 0 i

Denavit-Hartcnberg parameter

Denavit-Hartenberg parameters,

fixed manipulator lengths

element (i, j) of Jacobian matrix

Moore-Penrose pseudoinversc of
Jacobian matrix

factored terms

length from base to shoulder

length from wrist to end effector

Jacobian matrix expressed in {m}

lower left partition of mj

lower right partition of mj

mJLR with column j removed

column j of m,JLR

upper left partition of rnj

upper right partition of mJ

column i of mJuL with row 1
removed

mJuL with columns i and 4, plus
row 1 removed

Euclidean norm of vector P

position vector from origin of {n}

to {m}, expressed in {n}

components of {°P8)



_R

Rij

rij

8i

oli_ 1

0i

{o)

{O}A

{0}w

{0}A

CO}Ai4

{0}w

{0}Wj

{re,ok)

orthonormal rotation matrix of

{m} relative to {n}

element(i,j) of s°a

element (i,j) of _R

sin 0 i

homogeneous transformation

matrix of {m} relative to {n}

tan 0 i

linear velocity from origin of {k}
with respect to {0}, expressed in

{m}

unit direction vectors of {m}

0,  ,coz, oy,COz}T,
{{my8}, {mco8})T

Denavit-Hartenberg parameter

joint angle i

eight ARMII joint angles, arm,
and wrist (1-8)

{01, 02, 03, 04} T, four arm joint

angles (1 4)

C05, 06, Or, 08} r, four wrist joint

angles (5 8)

joint rate i

eight ARMII joint rates, arm, and

wrist (1 8)

arm joint rates

arm joint rates, excluding i and 4

wrist joint rates

wrist joint rates, excluding j

angular velocity of {k} with

respect to {0}, expressed in {m}

Mathematical notation:

{ } Cartesian coordinate frame

{.,., .... ,.}r vector components

Arm reference points:

S shoulder

E elbow

4

W wrist

Coordinate frames:

B base

H end effector

rn dextral

0 base for simplified kinematic

equations

4 elbow

8 end effector for simplified kine-

matic equations

3. Kinematic Simplification

3.1. Base and End-Effector Coordinate

Frames

For telerobotic tasks, the position and orienta-

tion of the cnd-cffector coordinate frame {H} are
controlled with respect to the base coordinate frame

{B}. The symbolic terms for the forward position

transformation and Jacobian matrix require signifi-

cantly less calculations when {8} is controlled with
respect to {0}. The origin of {8} is located at the

wrist point W and the origin of {0} is located at the

shoulder point S. (See fig. 3.) This removes L1 and L 8
from the basic kinematic equations. No loss of gener-

ality is incurred because control of {H} with respect

to {B} is transformed to control of {8} with respect

to C0} through equations (1), (2), and (3). Given

/_T, °T is calculated by the following equation:

s0T=0BT -1 /_T_/T -1 (1)

where

iiooo]0BT-1 :-- 1 0 0

0 1 -1L10 0

1°°°8 T I= 0 1 0
0 0 1 -L 8

10 0 0

Given the Cartesian translational and rotational

velocities {HvH} and {HwH}, the equivalent Carte-

sian velocity command at {8} is calculated as

{8¢o8} = {HcoH} (2)

{8V8} = {HvH} -- {8_8} × {8PH} (3)

where {8PH} = {0,0, L8} T. A velocity transforma-

tion is not required between {B} and {0} because no

relative motion occurs. Equations (1), (2), and (3)

r



are written for the inverse position and velocity prob-

lems. The same equations can be modified for use in

the forward position and velocity problems.

3.2. Decoupling Position From
Orientation

An efficient method for calculating kinematic so-

lutions of manipulators with spherical wrist mecha-
nisms is to decouple the position from the orienta-

tion. The arm joint angles position W in space and

the wrist joint angles orient {8} with respect to {4}.

The wrist joint rotations do not affect the positioning

of the arm joints. The ARMII has a four-axis spher-

ical wrist. Decoupling the position from the orienta-

tion applies to both position and velocity problems.

From reference 9, the general form of _T is

0T= 10

°n {OPs}

0 0 1

(4)

Equation (4) gives the decoupling of the position

from the orientation as follows. Because the spheri-

cal wrist causes no translations, the position vector

{°Ps} is a function of only the arm joint angles. The

manipulator orientation is provided by the wrist joint

angles relative to the orientation of {4}.

The terms for the forward position transforma-

tion, equation (4), are presented in the next section.
The position vector {°P8} is expressed as a function

of 01, 02, 03, and 04. The rotation matrix represent-

ing the manipulator orientation is given as a function

of all joint angles.

The Jacobian matrix used in velocity kinematics

has the following form when the wrist is spherical:

J z (5)

The wrist joint rates do not affect the translational

Cartesian velocity of the end effector; thus, the

upper-right portion of the Jacobian matrix is the zero

matrix. The Cartesian angular velocity is a function

of all joint rates.

4. Position Kinematics

4.1. Forward Position Kinematics

4.1.1. Denavit-Hartenberg parameters. Fig-
ure 3 defines the coordinate frames for the ARMII.

X7, X8

XH

X5, Z7

E

E
ZO, Zl

z2(

ZBI

F
/////

Z5, Z8, ZH

-7
L

d5

,,E
.) •

3

S

L1

,=..- Z
v 6

X3, X4

Xo,X 1, X2

•..._X Bv

Figure 3. ARMII coordinate frames. {0} = {0, 0, 0, 0, 0, 0, 0, 0}.

The manipulator pose in figure 3 is the initial po-

sition where all joint angles are 0. The Xo, Xl,

and X2 axes are coincident in the initial position.

The same is true of X 3 and X4 and also X7 and X8.



TheZ2,Z4,andZ7axesaredirectedoutward,per-
pendicularto the planeof thepaper.For theseco-
ordinateframedefinitions,theeightsetsof Denavit-
Hartenbergparametersrelatingthe ninesuccessive
coordinateframes{0) through(8} aregivenin ta-
ble 1. With the simplificationpresentedin sec-
tion 3.1, theparametersdl and d8 are both 0. In
figure 3, the lengths from the base to the shoulder

and the wrist to the end effector are labelled L1 and

L s to avoid confusion with the Denavit-Hartenberg

parameters dl and d8. The joint variables Oi are the

angles from Xi_ t to X i measured about Z i. Joints

five, six, and seven require the offsets given in table 1
for 05, 06, and 07 to be 0 in the initial configuration

of figure 3.

Table 1. Denavit-Hartenberg Parameters

1 1

2 t
3 t

4 I

5 I
6 I
7 I

8 I

ozi-1 ai-1

0 0

90 ° 0
-90 ° 0

90 ° 0

-90 ° 0
-90 ° 0

90 ° 0

90 ° 0

di Oi

0 01

0 02

d3 03
0 04

d5 05 - 90 °

0 06 + 90 °

0 07 - 90 °

0 08
. I

Nominal values for the fixed lengths are d3 =

762.0 mm and d5 = 495.3 mm. The fixed length

L1 depends on the manipulator mounting and Ls
depends on the end cffector. Nominal joint limits

are given in appendix A.

4.1.2. Homogeneous transformation ma-
trices. Tile general homogeneous transformation

matrix (rcf. 9) represents the position and orienta-

tion of {i} with respect to {i - 1} and is given as
follows:

i-1T =
?

col --sOl 0 ai_ 1 ]
sOico_i-1 cOiccti_ 1 --8o_i_ 1 -disc_i_ 1
sOi scq_ 1 cOi sai- 1 cc_i- 1 di sc_i - 1

o 0 0 1

(6)

The Denavit-Hartenberg parameters are substituted

into equation (6) to produce eight homogeneous

transformation matrices (given in appendix B) that
relate successive coordinate frames.

4.1.3. Forward position transformation.
The forward position transformation is a unique

mapping from joint space to Cartesian space:

sOT = I°T(01) 1T(02) 2T(03)...7T(08) (7)

6

Substituting the matrices of appendix B into equa-

tion (7) yields

r KNs - KTC 8 KTS8 + KNC 8 K U -d3ClS2 - d5K A ]

°W = I KQs8 - KVC8 Kvs8 + KQC8 KW -d3st s2 - dsKc |

(s)

Common terms Ki, reported in appendix C, are fac-

tored out to reduce computation time. Based on de-

coupling the position from the orientation, discussed

in section 3.2, the forward position transformation is

partitioned at {4} as follows:

W= 4T(01,02, 03, 04)_T(05, 06, 07, 08) (9)

where

KB --KA K2 ]

-d3el s2

QT = KD -Kc K4 -d3sls2
4

ff° ' o

_T=
ssc6ss - KK4c8 KKass + s5c6c 8 KK3 0 ]K K5 K K6 c6c7 d5JI + o
I o o o I

The KK i terms are defined in appendix C.

_.1._. Geometric arm joint redundancy.

Figure 4 presents the geometric interpretation of

the arm joint redundancy for the ARMII. The arm

S

OP8}

E

I
I
l
g

I
l
f

/
l
I

I
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W

Figure 4. Geometric interpretation of ARMII arm joint
redundancy.
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redundancy or self-motion is the rotation of the elbow The vector {°P8} gives the position of the

point E about {°Ps}. A given Cartesian position and wrist W with respect to the shoulder S, as shown

orientation is reachable at any of these locations of E. in figure 5. This length-of-reach constraint fixes the
The radius of this rotation r varies with {°P8}. The value of 04. The plane of triangle SEW is perpcn-

wrist joint redundancy provides a freedom in addition dieular to Z4 for all manipulator configurations. The
to this self-motion behavior.

4.2. Inverse Position Kinematics

The inverse position problem is a mapping from

Cartesian space to joint angle space. This problem

is more complicated than the forward problem be-

law of cosines is used to solve 04 so that

It{°P8}It 2 = d] + dg - 2d3d5 cos ¢ (11)

where I[{°P8}][ 2 = p2 + p2 + pz2 and 4) = 7r - 04.
The two 04 solutions to equation (11) are as follows:

cause it involves coupled transcendental equations

with multiple solutions. The inverse position prob-
lem calculates 01,02,...,08 for the ARMII, when

given the following Cartesian position and orienta-

tion command sOT:

[Rll R12 R13 __ ]0T : [RR_I1 /_22 RR_33 PY
(10)

Equation (8) expresses sOT in terms of the unknown
joint angles. Equations (10) and (8) are equated to

obtain the inverse position equations. This equating

yields twelve scalar equations, only six of which

are independent. The six independent equations
come from the three position terms and three of the

possible nine rotation matrix terms.

The inverse position problem cannot be solved
for redundant manipulators without additional con-

straints. The specified Cartesian location has six de-

grees of freedom but eight one-degree-of-freedom

04 = Jr- COS-1 11{°P8}112 - d:_ - d2
2d3d5

(12)

These solutions correspond to the elbow up and

elbow down configurations.

W

: {%}

St_ X3

joints. For tile ARMII, the inverse position prob= Figure 5. Geometric method to calculate 04.
lem is an underconstrained set of six equations in
eight unknowns. In this section, the inverse position

problem is solved by specifying two joint angles.

Decoupling of the position from tile orienta-
tion is utilized in the inverse solutions. The arm

joint angles are solved from the position command

{°P8}. The orientation command and the influ-

ence of arm joint angles on the orientation are then
used to solve for the wrist joint angles. Therefore,

the inverse equations are two sets of three equa-

tions in four unknowns. One joint angle is specified
from the arm joints and one from the wrist joints.

These methods are an adaptation and extension of
reference 11.

4.2.1. Inverse position solutions for arm
joint angles. Multiple solutions for {01,02, 03, 04}T

are obtained in this section with {°P8} given. A

geometric approach is used to solve for 04 first,

independently of {01,02,03} T and {05, 06, 07, 08} T.

A geometric method is used to determine whether

a given position command is within the manipulator
workspace. The maximum reach occurs when d3 and

d5 align (04 = 0). At the minimum reach, d5 folds
back upon d3 (04 = r). Based on these conditions,
the following inequalities must be satisfied for {°Ps}
to be reachable:

[d3 - d51 _< [I{°P8}II _< d3 + d5 (13)

This analysis ignores joint angle 04 limits, which
cause a more restricted workspace.

The remaining arm joint angles {01,02, 03} r are

solved with algebra and trigonometry. The wrist

mechanism is spherical; thus {°P5} equals {°P8}.

Equations for {01,02,03} T are obtained from the

identity

{0p5} = 0a(01,02, 03, 04){4p5} (14)



where{°Ps} = {Px, PY, PZ} T is the position com-

mand and {4P5} = {0, d5,0} T is known. Equa-

tion (14) is rewritten as

02R(01,02){0p5} = 42R(03, 04){4p5} (15a)

and expands to the following three scalar equations:

(Pxcl+PySl)c2+Pzs2=-d5c3s4 (15b)

-(Pxcl+Pysl)s2+Pzc2 =d3+d5c4 (15c)

Pxsl -PyCl =d5s3s4 (15d)

Equations (15b), (15c), and (15d) can apparently

be solved for the three unknowns (01,02, 03) because

04 is known. However, squaring equations (15b),

(15c), and (15d) and adding them gives the cosine
law used previously to solve 04. Therefore, equa-

tions (15b), (15c), and (15d) are two independent
equations in three unknowns. One joint unknown is

specified and the other two are solved. Three cases
are presented that correspond to specified 0t, 02,

or 03. For each case, 04 is known from equation (12).

Case 1. With 01 specified, equation (15c), re-
written in the following equation, is solved for 02 as

follows:

Ecos02 + Fsin02 + G = 0 (16)

where

E= -Pz

f = Pxcl + PySl

G = d3 + d5c4

Equations of the form in equation (16) arise often in

inverse position kinematics. The solution is obtained
with the tangent half-angle substitution (ref. 13).

Appendix D presents the two valid solutions for the
general form of equation (16) with this method.

A ratio of equations (15d) and (15b) is used to

solve for 03. The quadrant-specific inverse tangent

function is used to provide a unique result from the

following equation:

03 = tan-1 [ _PX_Sl-- Py___Cl Pzs2]-(Pxcx + Prsl)c2 -
(17)

Two 04 solutions are given in equation (12). For each

04, two 02 solutions are obtained from equation (16).

Each 02 has one 03 solution (eq. (17)). Therefore,
four solutions exist for the arm joint angles, with

the joint limits ignored. The four solutions have the
structure shown in table 2.

Table 2. Arm Joint Solutions With 01 Specified

n 01 02

1 01 021

2 01 022

3 01 022

4 01 021

03 = 04

03 04

--03 -I-71" 04

--03 --04

03 nt- 7r --04

Case 2. With 02 specified, equation (15c) is solved

to yield two values of 01:

Ecos01 + Fsin01 + G = 0 (18)

where
E=Pxs2

F=Pys2

G=d3+d5c4-Pze2

The angle 0a is again calculated byequation (17). Ta-

ble 3 gives the solution structure when 02 is specified.

Table 3. Arm Joint Solutions With 02 Specified

_i 1 01 02 03 04

011 02 03 04
012 02 --03 04

011 02 03-t-7 --04

012 02 --03+7 --04

Case 3. With 03 specified, both 03 and 04 are

known. Equations (15) are rewritten to separate the

unknowns 01 and 02 as follows:

_R{0p5}=_R{4p5} (19a)

Pxcl +Pysl = -(d5e3s4)c2 -(d3-}-d5c4)s2 (19b)

Prc 1 -Pxsl=-d5sas4 (19c)

PZ = (d3+d5c4)c2 - (dsc3s4)s2 (19d)

Equation (19c) is solved for two values of 01, inde-
pendently of 02, as follows:

E cos 01 + F sin 01 + G = 0 (20)

where
E = Py

F = -Px

G = d5s3s4

Equation (19d) is solved for two values of 02, inde-
pendently of 01, as follows:

Eeos02 + Fsin 02 + G = 0 (21)

m

E

=

r

N

=

V=

Ii.



where

E=-(d3+d5c4)

F=d5c3s4

G=Pz

Equations (19c) and (19d) are solved given each of

the two 04 values from equation (12). There are eight

possible solutions for sets of 01, 02, and 04, but only

four are valid. For each value of 04, equation (19b)

is used to determine which 02 value corresponds to
each 01. The solution structure is given in table 4.

Table 4. Arm Joint Solutions With 03 Specified

01 02

011 021

012 022

012+_ --022

011-t-_ --02i
04

03- 04

03 04

03 --04

--04

4.2.2. Inverse position solutions for wrist joint angles. This section presents an algebraic method

to solve the orientation part of the inverse position problem. Sets of {05, 06, 07, 08} T are solved given OR and

{01, 02, 03, 04} r.

The wrist joint angles orient {8} with respect to {4}. The orientation of {4} depends on {0t, 02, 03, 04} T.

The wrist orientation command 4R is calculated by the following equation:

 a=°R -1 °R= (22)
r31 r32 r33

The elements of oR are given in equation (9b). The wrist inverse position equations are obtained by equating

_a from equation (9) and equation (22). The unknowns are separated as follows:

= (23)

The matrices for the left- and right-hand sides of equation (23) are

-r21c --(r31c5+rllS5)s 6

r21s6--(r31c5-brllS5)C6
rllC5 -- r31s 5

--r22c 6 -- (r32c5+r12s5)s 6

r22s 6 -- (r32c5+r1285)c 6

rl2c 5 - r32s 5

--r23c 6 -- (r33c5+r13s5)s6 ]

r23s6 - (r33c5+r13s5)e 6 Jrl3c 5 -- r33s 5

--s8 --c8

--c7c8 c7s8 --s 7 J

Equation (23) contains nine scalar equations in four unknowns, three of which are independent. For solution,

one unknown joint angle is specified and the remaining three are calculated. Four cases are presented for

specified 05, 06, 07, or 08.

Case 1. With 05 specified, the joint angle 06 is solved from the (2,3) element of equation (23). The quadrant-

specific inverse tangent function is not required because 06 and 06 + _r are both valid solutions. The 06 solution

is

06 = tan -1 [r33c5-+----rlas51 (24)
F "1

L r23 J

A ratio of equation (23) elements (3,3) and (1,3) yields 07. The quadrant-specific inverse tangent function

must be used because one valid 07 value exists for each 06. Similarly, 08 is solved from the ratio of the

elements (2,1) and (2,2) of equation (23):

tan -1 [ Y33s5 -- r13c5 .]07
[r23c6 + (r33c5 + r13s5)s6]

(25)

9



08= tan-1 [(r31c5+ rllS5)C6 - r21s61 (26)
[(r32c5 + r1285)c6 r2286 J

Two wrist solutions exist for each {01,02,03, 04} re-
sult. The solution structure is demonstrated in
table 5.

Table 5. Wrist Joint Solutions With 05 Specified

n 05 06 07 0s

1 05 06 07 08
2 05 06+_ -07+_ 0s+_

Case 2. With 06 specified, the joint angle 05

is solved from the (2,3) element of equation (23).
The general solution for the following equation is

presented in appendix D. Both 05 results are valid.

E cos 05 + F sin 05 + G = 0 (27)

where

E = r33c 6

F = rl3c 6

G = --r23s 6

The wrist angles 07 and 08 are calculated by equa-

tions (25) and (26). One (07,08) pair exists for

each 05. The two wrist solutions are given in table 6.

Table 6. Wrist Joint Solutions With 0 6 Specified

n 05 06

05t 06
052 06

07 08

07 081

--07 082

Case 3. With 07 specified, the (3,3) element of
equation (23) gives the following equation:

Ecos05 +Fsin05 +G=0 (28)

where
E = r13

F = --r33

G= s7

Appendix D presents a solution method for equa-

tion (28). 05 has two valid solutions. The angle 06 is

solved from the (2,3) element of equation (23) and is

06=tan-l[ r33c5 +--r13s5 ] (29)r23 J

10

The quadrant-specific inverse tangent function used

to calculate one 06 is valid for each 05. The wrist

angle 0 s is calculated by" equation (26). One 08 exists
for each 05. Table 7 gives the two wrist solutions with

07 specified.

Table 7. Wrist Joint Solutions With 07 Specified

n

1

2

05

051

052

06

06
--06

07 08

07 081

07 0S2

Case 4. With 08 specified, two vahms for 05 are

solved from the ratio of the (3,1) and (3,2) elements
of equation (23) as follows:

05 = tan-1 [7"12 + rllt8]
[.r32 + r31t8J

(30)

Both 05 and 05 + _ are valid results. The unique

0 6 is solved by equation (29). The wrist angle 07 is
calculated by equation (25). For each 05 there is a
unique 07. Table 8 gives the two wrist solutions with

08 specified.

Table 8. Wrist Joint Solutions With 08 Specified

[ n ] 05

1 05r[ 2 05 +Tr
06 o7: 8l06 07 08

--06 + 7r 07 + 71" O_

4.2.3. Overall inverse position kinematic

solutions. The overall inverse position problem has

eight solutions: four arm joint solutions and two

wrist solutions for each. This is true for all specified
arm and wrist joint angle combinations. The overall

solution structure is greater than the individual arm

joint and wrist joint tables indicate. Table 9 presents

the eight solutions obtained with 01 and 05 specified.
Other combinations have a similar structure.

Table 9. Overall Solutions

n [01 02 I 03 04 ] 05

1[0, 021]i ea 04 105

2 101 021 03 04:05

3 01 022 --03+_ 04 05

4 01 022 -03+_ 04 05

5 01 022 --0 a --04 05

6 01 022 -03 -04 05

7 01 021 03+r --04 05

8 0t 021 03+_ -04 05

With 0t and 05 Specified

°61°7 °8 l061 071 081

061 Jr'/r --071 Jr 7r 081 Jr ?rl

062

06,) +?r

-06,)

--062 + 7["

-061
061 +

072 082
--072 Jr_ 082 Jr ff

--072 0S2+r[

072+_ 082 [
--071 0Sl +_]

071 +_ 081 I

m

=



5. Velocity Kinematics

5.1. Forward Velocity Kinematics

The forward velocity problem calculates the Cartesian velocities given the joint rates. The Jacobian matrix

is a linear operator that maps joint space velocities to Cartesian velocities as follows:

re{j(} _-- m j{0} (31)

In equation (31), re{j(} is the vector of Cartesian linear and angular velocities of {8} with respect to {0},

expressed in {m}. The dimension of {0} is eight for the ARMII. The Jacobian matrix order is 6 × 8.

5.1.1. Jacobian matrix expressed in {0}. The Jacobian matrix form for rn -- 0 is as follows:

J11 J12 J13 J14 0 0 0 0
_1 _ _3 _4 0 0 0 0

Oj = [ !0 _2 _3 _4 0 0 0 0

_2 _3 _4 _5 _6 _7 _8

42 43 44 45 46 47 48

0 43 44 45 46 47 4s

(32)

The upper-right Jacobian submatrix is the zero matrix because the spherical wrist joint rates 05 through t)8 do

not affect the translational Cartesian velocity. The first column of the Jacobian matrix shows that 01 affects

only 0k, Oy, and °Wz. The term 41 equals 1 because 01 adds directly to °Wz in {0} coordinates. The term 42

equals 0 because 02 does not influence °Wz. Because of the dccoupling of the position from the orientation, the

form of the Jacobian matrix is that of equation (5). The Jacobian matrix terms are

d3sls + dsKc -d3ctc 2 + d5clK 6 dsK2s4 -d5KB 1
OJuL = -d3cls 2 - d5KA -d3SlC2 + d5slK6 d5K4s4 -dsKD J0 -Kz d5s2s3s4 -dsK5

(33a)

0 Sl --ClS2 K2 ]
OJLL= 0 --el --SlS2 K4

1 0 c2 s2s3

(33b)

OJLR =
--KA --KH KN KU 7

- K C - K L KQ K W J- K6 KF K S Ky

(33c)

The terms K i from the forward position transformation (eq. (8)) arc given in appendix C. The Jacobian

matrix 0j is independent of 08. However, if vclocitics are transformed into {0} from velocities commanded

in {8}, 08 is involved. Of course, the end-effector Cartesian velocity depends on all joint rates, including 0s.

5.1.2. Jacobian matrix expressed in {4}.

The simplest symbolic form of the ARMII Jacobian
matrix is presented in this section. This form is de-
sirable because it reduces computation time for real-

time manipulator operations. In addition, closed-
form solutions to the inverse Jacobian submatrices

are less complicated.

A manipulator Jacobian matrix can be calculated

by many methods. The vector cross-product method

in reference 11 provides good physical insight into the

problem. With this method, the simplest symbolic
form of the Jacobian matrix results when it is based

on the middle coordinate frame. When cross prod-

ucts are taken from one end to the other (from {0}

to {8} or vice versa), the terms compound greatly.
Starting from the middle and working to both ends
results in fewer Jacobian matrix terms.

With 0j given by equations (33), the Jacobian

matrix referenced to any frame {m} is found and

11



Cartesianvelocitiesexpressedin {0} aretransformed
into {m} asfollows:

I 0{x)
m{2} = i

I

(34)

From properties of unitary orthogonal rotation

A = d3c 4 -}-d 5

B = d 3 + dhc 4

When equations (33) and (37) are compared, a great
reduction in symbolic terms is evident.

The terms K i and KKi from the forward posi-

tion transformation are given in appendix C. The _

Jacobian matrix in {4} is independent of 01 and 08.

However, if velocities are transformed into {4} from
matrices, velocities commanded in {8}, 08 is involved; 01 is in- "

_nR = OR-l= 0toRT ._
volvcd when velocities are transformed into {4} from

Substituting equation (31) for both re{j(} and 0{j(} velocities commanded in {0}.

in equation (34) and using the preceding rotation 5.1.3. Cartesian velocities expressed in{8}.
matrix relationships yield the following equation: The Jacobian matrix in {0} involves fewer symbolic

terms than in {8}. In turn, 4j is significantly sim-

0 R T 0 pler than 0j. The symbolic form of 8j is not re- !

mj = m .... 0{j} (35) ported. This section uses {8} as the coordinate frame
to present the necessary transformations for velocity

0 0toRT solutions.

The forward velocity problem using mj yields
For the ARMII, {4} is the middle coordinate Cartesian rates expressed in {rn}, where m = 0 or 4

frame. The general form of 4j is reported in equa- in this paper. Equation (34) is used when these rates

tion (36), obtained from rn = 4 in equation (35): are desired in {8} coordinates to give the following

[-Jll J12 0 J14 0 0 0 0 ] equations:

|J21 J22 0 0 0 0 0 0 | "_
4.1_ |Y31 J32 J33 0 0 0 0 0 | {Sv8} _RT{mvs}

---|J41 J42 J43 0 0 J46 J47 J48| {sws}={Rr{mws) J_ (38)

|Jhl J52 J53 0 1 0 J57 J58|

I-J61 J62 0 1 0 J66 J67 J68J The input to the inverse velocity problem is re{j(}.
(36) When these rates are expressed in {8}, equations (38)

Equation (9) is a symbolic representation of the ma- are inverted before mj is used in the inverse velocity

trix OR, and the 4j terms are given in the following solution as follows:

equation:

[ ' " {my8} _ _nR{8v8} /4 4JuL ] 0 (39)
J = _ ........ (37) {rowS} = _nR{8wS} J

L4JLL The rotation matrices _R are contained in equa- j
4JLR

where tion (8) for rn = 0 and equation (9) for rn = 4.

[ -As2s3 -Ac3 0 -dh] 5.2. Inverse Velocity Kinematics

4JuL = [ d3s2s3s4 d3c3s 4 0 0 _ The inverse velocity problem solves the linear _-

k d3s2c3 + dhK5 -Bs3 dhs4 0 j equation (31) for the joint rates when given a Carte-

sian velocity command. Standard linear solution

4 [ K5 -s3c4 s4 o| techniques cannot be used for a redundant manipu-
JLL = |-K6 s3s4 c4 O| lator because the Jacobian matrix is nonsquare. The B

__s2s3 c3 0 I J inverse velocity problem for the ARMII is undercon-
strained with six equations in eight unknowns. Equa_ --

tion (31) can be inverted with the wcll-known gener-

0 c5 s5c6 KK3] alized inverse (ref. 13) of the Jacobian matrix. This
4JLR = 1 0 --s6 c6c7 | redundant solution minimizes the Euclidean norm of =

0 -s5 c5c6 KKlJ the joint rates. _-

12
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General redundancy resolution techniques are not

presented in this paper. Instead, two joint rates are

specified to solve the inverse velocity problem. The

remaining system is six equations in six unknowns.
A unique solution exists, when the manipulator is in

a nonsingular configuration, i.e., when the Jacobian

matrix has full rank. A square set of linear equations

results only when one joint rate is specified from

the arm joints and one from the wrist joints. This

behavior agrees with the inverse position behavior.
Specifying two wrist rates is possible, but it leads

to an underconstrained set of equations for the arm

joint rates, and these equations are beyond the scope
of this paper. Additionally, joint rate 04 cannot be

specified independently of the translational velocity
command because of the structure of the ARMII.

The length of reach from the shoulder to the wrist

determines the elbow joint angle 04. A derivative of

this constraint dictates that the elbow joint rate 04

is uniquely determined by the Cartesian translational
velocity command.

5.2.1. Independent solution for _)4. The

joint rate _74 is solved independently of the remaining
seven unknown joint rates from a time derivative of

equation (12). Equation (11) is rewritten as

p_ + p2 + p2 = d 2 + d25+ 2d3d5c4 (40)

Simplifying the time derivative of equation (40) yields

the following solution for _74:

_ (.x0 + +pz0 )
04 (41a)

d3d5s4

In equation (41a), the Cartesian velocity command
is expressed in {0}. When the frame of expression

is {4}, 04 is simplified as shown in the following

equation:

--1 [4J: + d3@44/_/] (41b)04 = -_5

where A is defined following equation (37).

5.2.2. Inverse velocity solution for remain-

ing joint rates. The inverse velocity problem ex-
ploits decoupling of the position from the orientation.

Equation (31) is rewritten as

J

rnJUL 0

mJLL mJLR

{0h {mvs}
{m 8}

counting for the arm joint rates, the bottom three
equations are then used to find the unknown wrist

joint rates. The joint rate 04 is known from equa-

tions (41). Therefore, column four of rnJuL is sub-

tracted from the right-hand side of equation (42),

multiplying by _)4- The remaining system is three

equations in three unknowns. However, a unique

solution to this system does not exist because it is

always singular. The first two rows are dependent;
the rank is two and not three. Either row one or two

must be removed from the upper system of equations.

The remaining system is two equations in three un-

knowns, as for the arm angles in the inverse posi-
tion solution. In this paper, the solution is achieved

by specifying one joint rate from _?1, 02, and 03 and

then solving for the other two. The wrist joint rates

are solved with the three equations in four unknowns

from the bottom of equation (42), after the arm joint

rates are obtained. One joint rate from _75, 06, 07,
and 08 is specified and the remaining three are solved

from the full-rank system, provided that the wrist is

not in a singular configuration.

Solution in frame C0} is obtained as follows. If

0i from the arm joints and _?j from the wrist are

specified, columns i and j are removed from JUL4
and JLR. Joint rate _)i is likewise removed from

{0}A4, and _)j is removed from {0}w. In addition,
to achieve a consistent set of equations for the arm

joint unknowns, row 1 of JUL4 is removed; row 1

of the Jacobian matrix in {0} or {4} is symbolically

more complex than row 2. For m = 0, the solution
is obtained with any linear solution method used for

the following equations:

OJ1uLi4{O}Ai4 = {0V8} -- bi O{J1uLi} -- 04 O{J1uL4} (43a)

OJLRj{b}_Vj = {0IM8} -- Oj O{JLRj} -- OJLL{O}A (43b)

The order of equation (43a) is 2 x 2. Row 1 of {°vs}

is removed because the first equation of equation (42)

is removed. The order of equation (43b) is 3 x 3
because the wrist equations are of full rank for the

general case.

Solution in frame {4} is obtained as follows. The
symbolic form of 4j is simpler than 0j, as demon-

strated in section 5.1.2. When {4} is used as the
reference frame, the linear equations are solved in
closed form. The resolved motion rate solution for

(42) this case is given by the following equations:

{0}Ai4 4j-1 _ _= lULl4 ({ 4v8} Oi 4{J1uLi} 04 4{J1uL4}) (44a)

The upper three equations of equation (42) are

solved to yield the unknown arm joint rates. Ac- {OIw j = 4JLI j ((4_8} -- Oj 4{JLRj} -- 4JLL{O}A ) (44b)
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Row 1 is removedfrom {4v8} in equation(44a).
Thesymbolictermsforthe inversereducedJacobian
submatricesaregivenin appendixE, for i = 1, 2, 3
and j = 1,2,3,4.

For either inverse velocity solution (eqs. (43) or

(44)), the commanded Cartesian velocities must be

transformed into {0} or {4} coordinates, unless they
are specified in these frames. _Vhen Cartesian ve-

locities are expressed in {8}, this transformation is
accomplished with equations (39).

6. Manipulator Singularities

At a singular position, a manipulator loses one or

more degrees of freedom. A nearsin_llar configura-
tion mathematically requires infinite joint rates for

certain finite Cartesian velocity commands. Singql-

larity configurations for nonredundant manipulators

are determined by equating the Jacobian matrix de-

terminant to O. For redundant manipulators, the Ja-
cobian matrix is nonsquare and thus its determinant
does not exist.

The least-squares redundant solution to the in-

verse velocity, or resolved motion rate problem, is

obtained by inverting equation (31).

{_)} = m j* rn{x} (45)

In equation (45),

j, = jT(jjT)-I (46)

is the well-knowm pseudoinverse, or Moorc-Penrose

inverse of the Jacobian matrix (ref. 5). The singu-

larities for a redundant manipulator can be found by
setting the determinant of (jjT) equal to 0, as evi-

dent in equation (46). General redundant solutions

and singularities, however, are beyond the scope of
this paper.

The singularities reported in _his section corre-
spond to the inverse velocity solutions presented in

section 5.2. Singularities are divided into arm singu-

larities and wrist singularities for manipulators with

spherical wrists. For the ARMII, arm singularities

are identified from ]mJUL I and wrist singularities

from lrnJLRl. The order of the reduced Jacobian
submatriccs used in section 5.2 is 2 x 3 and 3 x 4.

When column 4 is removed from mJuL the determi-

nant is 0 for any manipulator, configuration. Thus,
joint angle 04 and joint rate 04 cannot be specified
in the inverse position and velocity solutions. From

equation (41a) or (41b), the joint rate _)4 is infinite

when 04 = 0, rr. This characteristic is a singularity

condition for all arm joints, as shown in table 10.

14

Table 10. Arm Joint Singularities

Singularity

]m JU Lil conditions

dad5c3 s2

2 d3dss2s3s _

3 -d3s4Kz

02 -= O>'n

03 = O, rr

04 = 0, Tr

04 ----O,

Kz=O

To find the arm joint singularity conditions,

columns i = 1, 2, and 3 are removed individually

from mJ1uLi 4 and the remaining 2 x 2 determinants
are set to 0. Similarly, columns j = 1, 2, 3, and 4

are removed from rnJLRj; the 3 X 3 determinants are
equated to 0 to yield the wrist joint singularities.

Given a specific Jaeobian matrix, such as 0j, the

Jaeobian nmtrix referenced to any other frame m is

found with equation (35). The singularity conditions

are identical for Jaeobian submatrices expressed in
any coordinate frame because the determinant of a
matrix is invariant under rotation transformations.

In this paper, 0j and 4J are presented (eqs. (33)
and (37)). The submatrices Of either Jacobian matrix

yield the arm joint singularities in table 10 and thc
wrist joint singularities in table 11. The condition

K z = 0 under i = 3 in table 10 is equivalent to

(d3=-d5 c4+ t2 ]"

Table 11. Wrist Joint Singularities

J l ImJLRJt

1 --c 7

2 --c6s7

3 --s6c 7

4 --c6

Singularity
conditions

07 = :t:_

06 = -t-_

The results of tables 10 and 11 are also singular-

ities for the inverse position solutions presented in
section 4.2. This section has identified the ARMII

i

=

w

|

F

E
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singularities associated with specifying one arm joint

rate (excluding the elbow) and one wrist joint rate
and solving the inverse velocity problem. Alternatc

solutions for the neighborhood of singularities are not

presented. An alternative is to use the generalized in-
verse (ref. 5) of the reduced 6 × 6 Jacobian matrix

at or near singularities. At a singularity, the rank of
this matrix is less than 6. The determinant is cal-

culated at each calculation step. If it is near 0, the
generalized inverse of the reduced Jacobian matrix

is used to avoid infinite joint rates. This singularity

solution does not track the given velocity command

precisely, but it does move the manipulator out of

the singularity region so that the solution given in
this paper can be used again.

7. Examples

Examples are presented in this section for forward

position, inverse position, forward velocity, and in-
verse velocity problems to demonstrate the equations

in this paper. The units are millimeters, degrees,
millimeters per second, and radians per second for

length, angle, translational velocity, and rotational

velocity, respectively. The fixed manipulator lengths
for the examples are as follows:

L1 = 500.0

d3 = 762.0

d5 = 495.3

L s = 470.0

7.1. Position Kinematic Examples

7.1.1. Forward position transformation.
Two examples for the forward position transforma-

tion are given. The first is the initial position shown

in figure 3 and the second is a general configuration.

For each example, the partitioned solution (eq. (9a)),

the transformation from wrist to shoulder (eq. (8)),
and the transformation from end effector to base

(modified eq. (1)) are given.

Example 1. {0} = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0} T

OT=

"1.000 0.000 0.000 0.000 ]
0.000 0.000 -1.000 0.000 J0.000 1.000 0.000 762.000

0 0 0 1

-1200 0.000 0.000 ! 1
4T-- 0.000 0.000 1.000 4 .3
8 0.000 1.000 0.000

0 0 0

0T=

"-1.000 0.000 0.000 0.000 ]
0.000 -1.000 0.000 0.000 J0.000 0.000 1.000 1257.300

0 0 0 1

- 1.000 0.000 0.000 0.000
BT _-- 0.000 -1.000 0.000 0.000
H 0.000 0.000 1.000 2227.300

0 0 0 1

Example 2. {0} = {10.0, 20.0, 30.0,40.0, 50.0, 60.0, -70.0, 80.0}T

4°T=

"0.331 -0.717 0.613 -256.6601

45.256]044; _0;;101 1
1 J0 0 0

_T=

" 0.447 -0.331 0.831 0

-0.771 -0.613 0.171 495.3

0.453 -0.717 -0.529 0
0 0 0 1

sOT=

"0.979 -0.110 -0.172 -611.9717
0.200 0.683 0.703 - 269.549 ]
0.041 -0.722 0.690 978 284 /

0 0 0 i J

0.979 -0.110 -0.172 -692.958 l
B T = 0.200 0.683 0.703 60.660H 0.041 --0.722 0.690 1802.788

0 0 0 1

7.1.2. Inverse position kinematics. The in-

put for this example is °T from example 2 in the
previous section. Eight solutions are calculated from

the equations in section 4.2. The angles 01 ---- 10 and

06 ---- 60 are specified. Equations (12), (16), (17),
(24), (25), and (27) are used for the results of ta-
ble 12. The methods of sections 4.2.1 and 4.2.2 are

used to form the multiple solutions.

Table 12. Inverse Position Kinematic Solutions

rt 01 0 03 07 8

--1 10-20.001 3O.00 --40700 / 50.00 60 --70.00_ sO-.06]
/ I

2 10 20.001 30.00 40.00 1-164.99 60 70.00 123.04]

3 10 47.161 150.00 40.00 1 341.26 60 -33.24 ]27.31
4 10 47.161 150.00 40.00 r-304.51 60 33.24 I-7.81

5 10 47.161-30.00 -40.00 ] 161.26 60 -33.24 [ 27.311
_110 47.161-30.00 -40.00 1-124.51 60 33.24 I-7.811

_'10i20.001 210.00 -40.00 I 230.00 ]60 -70.00 180.001

8110!20.00! 210.00 -40.00 !--344.99 !60 70.00 123.04I
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7.2. Velocity Kinematic Examples

Themanipulatorconfigurationfor the velocityexamplesis the input to forwardpositiontransformation
(example2):

{0} = {10.0,20.0,30.0,40.0,50.0,60.0,-70.0,80.0} T

7.2.1. Fox'ward velocity kinematics. Given {0}, 0j is calculated with equations (33), and given {t_},

the forward velocity solution is calculated with equation (31):

269.549 -963.422 195.192 -163.903 0 0 0 0 7

-611.971 -169.877 -245.555 -221.538 0 0 0 O /0 -649.480 54.445 -411.556 0 0 0

0 0.174 -0.337 0.613 -0.717 -0.257 0.945 -0 72

0 -0.985 -0.059 -0.771 -0.453 0.878 0.316 0.703 /
1 0 0.940 0.171 0.529 0.403 -0.085 0.690 A

0j=

{0vs} = -2574.5 {0w8} =
-2781.8

The Jacobian matrix relative to {4} is calculated with equation (37). The forward velocity solution is

calculatcd with i = 4 in equation (31), given the same {0} used previously. The resulting Cartesian velocities

still relate {8} to {0} but are expressed in {4}:

4j=

-184.524 -934.464 0 -495.300 0 0 0 0

83.761 424.183 0 0 0 0 0 0
637.259 -570.711 318.373 0 0 0 0 0

0.831 -0.383 0.643 0 0 0.643 0.383 0.831

0.529 0.321 0.766 0 1 0 -0.866 0.171
0.171 0.866 0 1 0 -0.766 0.321 -0.529

{4V8} ---- 932.1 {40a8} =
451.0 --0.68

With OR from the forward position transformation (example 2), 4{j(} transforms to the pre_dous 0{j(} results

and thus proves to be a consistent solution. The solution expressed in {8} is calculated with equation (38):

{_2319.3}{3 7}{8v8} = 440.2 {8w8} = -6.85
-3431.8 13.62

7.2.2. Inverse velocity kinematics. Given {0} and the forward velocity results expressed in {0}, the

joint rates are calculated with equations (43). In this example, 02 = 2 and 05 = 5 are specified. Equation (41a)
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-221.538}°{J1uL4}= --411.556

Thesolutionforjoint rates1and3 is

{1.00}{0}A24 = 3.00

The terms for equation (43b) are

0.831 -0.383 0.643 0]
4JLL = 0.529 0.321 0.766 0

0.171 0.866 0 1

The solution for joint rates 5, 6, and 7 is

5.00 }
{0}W4 = 6.00

7.00

[ -0.257 0.945 --0.172-

0JLR 1 = | 0.878 0.316 0.703
[_ 0.403 --0.085 0.690

-0.717 }
0{JLR1} = --0.453

0.529

0 0.10;4 -0.337 0.613
°JLL = 0 -0 85 -0.059 -0.771

1 0.940 0.171

The solution for joint rates 6, 7, and 8 is

6.00 }
{O}w1= 7.00

8.00

The same inverse velocity problem is solved in

8. Concluding Remarks

This paper presents the forward position kine-

matics (given the eight joint angles, how to find

the Cartesian position and orientation of the end ef-

fector) and forward velocity kinematics (given the
eight joint rates, how to find the Cartesian transla-

tional and rotational velocities of the end effector)

for the redundant eight-degree-of-freedom Advanced

Reseach Manipulator II (ARMII).

Inverse kinematic solutions, required to control
the manipulator end effector, are also presented. For

a redundant manipulator, the inverse kinematic solu-

tions are not unique because they involve solving for

eight unknowns (joint angles for inverse position and

joint rates for inverse velocity) in only six equations.
The approach in this paper is to specify two of the

unknowns and solve for the remaining six unknowns.
closed form with equations (44), with respect to the Two unknowns can be specified with two restrictions.

elbow coordinate frame {4}. The input is the forward First, the elbow joint angle and rate cannot be spec-

velocity results expressed in {4}; 03 = 3 and 0s = 8 ified. The elbow joint angle is determined solely by

are specified. Equation (41b) yields 04 = 4.00. The the commanded end-effector position. Likewise, the

terms for equation (44a) are elbow joint rate is determined by the commanded

4 -1 [0.0018 0.0013 ]J1UL34 = [0.0020 --0.0003

4{J1uL3} = { 318!373 }

4{J1uL4}:{ O}

The solution for joint rates 1 and 2 is

{100}{0}A34 : 2.00

The terms for equation (44b) are

1.3268 1 1.1133 ]
4JL_4= 0.6428 0 -0.7660

1.5321 0 1.2858

0.831 }
4{JLR4} = 0.171

-0.529

end-effector Cartesian translational velocity. Second,
one unknown must be specified from the four-jointed

wrist, while the second unknown must be specified

from one of the arm joints (elbow joint excluded)
that translate the wrist.

In the inverse position solution, each set of two

specified joint angles has eight sets of solutions. No
alternate inverse position solutions are presented for

singular configurations. In the inverse velocity prob-

lem, with two specified joint rates, the solution is

unique, provided that the Jacobian matrix is not

singular. A discussion of singularities is based on
specifying two joint rates and analyzing the reduced
Jacobian matrix. When the reduced Jacobian ma-

trix is singular, the generalized inverse can be used

to move the manipulator away from the singularity
neighborhood.

With two redundant joints, the methods of this

paper allow considerable freedom in solving the in-

verse kinematic problems. Either joint angles or rates

must be specified for one of the three arm joints

and one of the four wrist joints at each calculation

17



step. Controlstrategieswilt bedevelopedasactual
ARMII hardwareexperienceisaccumulated.A sim-
ple methodfor controlwouldbe to lock twojoints
for all motion,for example,joints threeandfiveor
jointsthreeandsix. To accomplishthismethod,the
lockedjoint anglesandrateswouldbcspecifiedas0
for all motion.However,themethodsof this paper
allowmoreflexibility.

A computersymbolicmanipulationprogramwas
usedwith existingstandardmethodsin roboticsfor

the derivationof the equations.In addition,com-
putersimulationsweredevelopedto verify theequa-
tions.Examplesdemonstrateagreementbetweenfor-
ward andinversesolutions. Researchinto applied
redundantcontrolstrategiesisrequiredto realizethe
potentialof theARMII.

NASALangleyResearchCenter
Hampton, VA 23681-0001
June 3, 1992
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Appendix A

ARMII Nominal Joint Limits

The nominal joint limits for the ARMII are given in table A1. The wrist pitch angle, i = 7 in table A1,

is severely limited in the positive direction. The wrist roll is continuous and unlimited in both directions, as

shown for i = 8 in table A1.

Table A1. ARMII Joint Limits

Oi

+165 °

±105 °

±165 °

±105 °
±165 °

±165 °

+22 o, -130 °

Continuous,
bidirectional

19



Appendix B

Homogeneous Transformation Matrices

Eight homogeneous transformation matrices are given in this appendix, and they relate frame {i} to

{i - 1} for the ARMII, where i = 1,2,...,8. Substituting the Denavit-Hartenberg parameters of table 1

into equation (6) yields these matrices:

10T__ 0
1

0 0

o i]0

_T= 0 1

[O83 --C3 00 0

[_ -_40 0]4aT= 0 - 0

0 0 1

°°14 T = 0 1 d5
5 c5 -s5 0 0

0 0 0 1

65T= 0 0 1

--c6 0 6 00 0

Ol!]_T-- 0 -
0Lo_j o

o_oli]_W--Lo__0 0°

L

20
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Appendix C

Factored Kinematic Terms

This appendix presents the kinematic terms factored for efficient computation of the forward position

transformation matrices and the Jacobian matrices in {0} and {4}. The common terms for equation (8) and

equations (33) and (37) are as follows:

K1 = -SlS3 + CLC2C3

K 3 = ClS 3 -_ SlC2C 3

K5 = c284 _- 82c3c4

K7 = s2c4 • c2c384

K B =Klc 4 - ClS2S 4

K D : K3c4 - 818284

K F = Ksc 5 - s2s3s 5

K H : --KBC5 + K2s5

K L : --KDc 5 + K4s5

K N = KGC 6 -_- KAS 6

KQ : Kjc 6 + KCS6

K S-- KEC 6+K6s6

The terms for equation

K U = I(Mc 7 -b KHs7

K W = Kpc 7+KLs7

Ky = KRc 7 - KFs7

(9) and equation (37)

KK1

KK2

KK3

KK4

KK_

KK6

K2 : sic3 -_- CLC283

K 4 : -ClC 3 _- SlC2S3

['(6 : -c2c4 _- s2c384

K A -_ Kls 4 + CLS2C4

K C : g384 + SlS2C4

KE : Kss5 + s2s3c5

K G : KBS5 + K2c5

Kj : KDS 5 + K4c5

K M --- KGS 6 - KAC 6

Kp = Kjs 6 - KCC6

K R = KES 6 -- K6c 6

K T -- KMS 7 - KHC 7

K V : Kps 7 - KLC 7

K X : KRS 7+KFc7

K Z :d3s 2+d5K7

are as follows:

:s587+c5s6c7

: s5c 7 -- c58687

:--C5S7+S586C7

=c5c7_858687

:--s6s 8 --c_s7c 8

:--s6c 8+c68788
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Appendix D

Solution of E cos/3 + F sin fl + G = 0

The general solution to the following equation is presented in this appendix:

Ecos/3+ Fsin/3+ G-- 0 (D1)

In equation (D1), E, F, and G are constants and fl is unknown. Thc tangent, half-angle substitution is used

to transform equation (D1) from a transcendental to a polynomial expression:

t = tan -/3 (D2)
2

1 - t 2

cos/_ - 1 + t 2 (D3)

2t

sin_= l+t_ (D4)

Substituting equations (D3) and (D4) into equation (D1) yields the following polynomial equation:

(G- E)t 2 + 2Ft + (G + E) = 0 (D5)

The equation has two solutions:

E-F 4- _/E 2 + F 2 - G 2 (D6)
tl,2 = G - E

Tile first-order transcendental equation (eq. (D1)) has been transformed into a sccond-ordcr polynomial

equation (eq. (D5)). The two corresponding valucs of _ are found by inverting equation (D2) and substituting

equation (D6). Both results are valid solutions for equation (D1):

fll,2=2tan-1 [-F:t:_/E 2+F 2-G 2
L

(D7)

Because of the multiplying factor of 2 in equation (D7), tile quadrant-specific inverse tangent function is not

required. The two-quadrant inverse tangent function suffices, unless G equals E.
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Appendix E
Inverse Jacobian Submatrices

Thesymbolicformof 4j requirestheleastcomputationfor anyARMII mj matrices,asdemonstratedin
section5.1.2.Oneadvantageof 4j is theability to applyclosed-formsolutionsfor theresolvedmotionrate,
or inversevelocity,problemin real-timecomputation.This appendixpresentsthe inversesof the reduced
Jacobiansubmatrices"lJ1uLi4, i = 1, 2, 3, and 4JLRj, j = 1, 2, 3, 4, for use in equations (44).

When the joint rate is specified for the first, second, or third arm joint, the following inverse matrices are

used. The order of the matrices in equations (El) through (E3) is 2 x 2 because the elbow joint rate 04 is solved

(sec cq. (41b)) independently of the remaining joint rates. Two of the three translational velocity equations

are independent; i = 1, 2, or 3 is specified and the other two arm joint rates are solved. The first subscript 1

in the following equations indicates that row 1 was eliminated from equation (42):

4 -1
J1UL14 =

1 0

Bt 1

d3d5s 4

(El)

4 -1
J1UL24 :

1 0
d3s2s3s4

d3s2c3+d5K5 1

d3d5s2s3s _ 5-d_4

(E2)

J1UL34 = d3_c_+ d5K 5 s s
(E3)

where

D = d3s4(Bs 2 + d5c2c3s4)

The term B is defined from 4j (eq. (37)):

B = d3 + d5c4

The terms K 5 and K z are defined in appendix C.

The following inverse matrices are used when the joint rate is specified for the fifth, sixth, seventh, or eighth

manipulator joint (corresponding to j = 1, 2, 3, 4):

1 [ KK4 c6s7 -KK2]

4JL_ 1 = _7 |s5c6c7 -s6c7 C5C6C7 I
L sss6 c6 c5s6 j

(E4)

1

4JL_2 = _77

1 -KK2 ]
c6 c6

c6

-c 5 0 s 5

(E5)

23



4j_ 1
s6

-c6s5 1 -c5c6

K__ K O
c7 c7

s-a 0 _
c7 c7

(E6)

s5s 1 c5s6 ]1 I e5c6 0 --s5c 6 (E7)
4JLR4= _k s5 0 c5

.J

The ordcr of these matrices is 3 × 3 because the three rotational velocity equations are independent. The terms

KKi arc defined in appendix C.
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